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J .  Phys. A: Math. Gen. 21 (1988) 3463-3480. Printed in the U K  

Correlations at a liquid-gas interface: asymptotic analysis for 
weak gravity 

P C Hemmer and B Lundt 
Institutt for Teoretisk Fysikk, NTH, Universitetet i Trondheim, N-7034 Trondheim, Norway 

Received 12 February 1988 

Abstract. Density-density correlation functions at the phase-separating layer in a two- 
dimensional solid-on-solid lattice model are studied. We perform for weak gravitational 
fields an exact asymptotic analysis and obtain explicit expressions. A recent numerical 
analysis by Stecki and Dudowicz is shown to be in good agreement with our exact expansion. 

1. Introduction 

There is an increasing interest in the equilibrium properties of spatially non-uniform 
fluids, particularly of those of interfaces between fluid phases (Croxton 1980, Rowlinson 
and Widom 1982, Bedeaux 1986). In the microscopic theory of non-uniform classical 
fluids an essential role is played by the correlation functions and it is of interest to 
study the decay of correlations both along the interface and orthogonal to the phase- 
separating layer. 

Few models are amenable to exact analysis. To obtain simple and transparent 
results it is a natural idea to use the solid-on-solid version of the two-dimensional 
lattice gas and this is the model we study. Fluctuations of the interface are particularly 
strong in two-dimensional systems: the zero-gravity interface is rough at all tem- 
peratures. An external field, i.e. the gravitational field, has two effects: it localises the 
average position of the interface in space and it reduces the fluctuations of the interface 
about this average position. Gravity is a very weak force, and it is natural to ask 
whether one can perform an exact asymptotic expansion of physical quantities when 
the gravitational constant g is assumed to be small. In an interesting recent paper, 
which served as a motivation for the present investigation, Stecki and Dudowicz (1986) 
studied precisely such an expansion by numerical means. We will demonstrate in the 
present paper that an analytical treatment is feasible. Explicit low-order results for 
the interface density profile, the height-height correlation function, the density-density 
correlation function and the local susceptibility are given. In most cases the numerical 
results of Stecki and Dudowicz (1986) are found to be in good agreement with our 
exact expansions. 

+ Present address: lnstitutt for Fysikalsk Elektronikk, NTH, Universitetet i Trondheim, N-7034 Trondheim, 
Norway. 
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2. The model 

The surface between an upper gas phase of density pg and a lower liquid phase of 
density pI can, in the lattice model, be described by a set { h , }  of integer heights. The 
Hamiltonian is of nearest-neighbour type: 

The constant ho determines the average height of the phase-separating layer, and it is 
no restriction to take ho=O. An arbitrary constant in H is omitted. This constant 
includes the nearest-neighbour interaction energy 

Eo = 2 JL ( 2 )  

for a flat surface, as well as a possible constant field energy contribution. 
The height coordinates h, are assumed unrestricted (restricting the heights to a 

finite range localises the interface and is in several respects similar to localisation by 
a finite gravitational field, as shown by Stecki et al (1986)). It is convenient to assume 
periodic boundary conditions along the interface, h, , ,  = h,, and the limit L+ CG is to 
be taken. 

The probability distribution P ( { h , } )  of an interface configuration is given by the 
Boltzmann factor 

(3)  P ( {  h , } )  = Z-'  exp( -PH) 
with 

z = exp(-pH) 
{ h , l  

the partition function. 
P can be expressed in terms of a symmetric transfer matrix 

T ( h,,  h, ) = ex p( - 2 K I h,  - h, I - Gh f - 4 Gh: ) . 

G = fgm(Pi - P,)P K = p J  ( 5 )  

(4) 
Here 

with P - '  = kBT being the product of the Boltzmann constant and the absolute tem- 
perature. Explicitly we have 

and 

3. The eigenvalue problem 

All physical quantities can be conveniently expressed in terms of eigenvectors &, and 
eigenvalues A,, of the transfer matrix: 

T+" = A"& A 0 2  A I  2,422.. . . (8) 
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Since T is real and symmetric, the eigenvectors can be chosen to be real, and the 
positivity of the matrix elements ensures that the maximum eigenvalue A. is positive. 

exp[iG(h+l)’]rL(h+l)+exp[tG(h - 1 ) ’ ] + ( h  -1)  

The eigenvalue problem (8) is easily turned into the simple recursion 

= [2 cosh 2K -2A-’ sinh 2K exp(-Gh2)] exp(fGh2)+(h)  (9) 

using the identity 

exp( -2K In + 11) + exp( -2K In - 11) = 2 cosh 2K exp( -2 K In/) - 2 sinh 2K&. 

The recursion (9) has the form of a discrete Schrodinger equation for 

( I O )  

$ ( h )  = + ( h )  exp(tGh2) (11) 

with a potential that becomes slowly varying for small G. This motivates the perturba- 
tion expansion (van Leeuwen and Hilhorst 1981). 

We prepare for the perturbation expansion by putting 

+ ( h  f 1) = exp(*d/dh)$(h) (12) 

by scaling heights through 

yh = y  r L ( h ) = f i 4 ( y )  
and by introducing a scaled eigenvalue parameter 

A = ( A  tanh K)”’. (14) 

In terms of these variables equation (9) takes the form 

( e G i / y  e y d / d r  + e - G i ’ y  e - y d / d i  - 2  e - G ’ 2 ) 4 ( y )  

) 4 ( Y ) .  - - 4 e - G / z  sinh2 K (1 -,j-? e-i’G/Y’ 

The appropriate scaling of the stretching variable y is y a  and it will be 
convenient to take 

y = (2 sinh K)’’2G1’4 (16) 

in order to simplify later expressions. Equation (15) can now be expanded in powers 
of As expansion parameter we introduce 

E = fG‘I2/sinh K (17) 
rather than G itself. This assumes that the expansion is performed at a fixed finite 
temperature. The final form of the exact recursion (15) is then 

-~~-‘S-*[exp(2S&’’’y) exp( E ‘”d/dy) + exp( - 2 s ~ ~ ” ~ )  exp( -E’l’d/dy) 

- 2 e x p ( - 2 ~ * ~ ’ ) ] + t ~ - ’  exp(-2~’~’) [1  -il-2 exp(-ey2)l (19) 

S=s inh  K. (20) 

in which we have introduced the abbreviation 
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So far everything is exact. We now expand 

R = R ' " ' + & R " ' +  . . .  
4=c$!" )+&c$~'~+. . .  

A = 1 + &A"'+  E ' A ' ~ ' + .  . . 
and find 

To lowest order 

which is a harmonic oscillator Schrodinger equation. Thus 

n = o ,  1 , 2 , .  . . . (27) 

(nlfl"'ln) = 0. (28) 

A ~ k 2 '  = i n  ( n  + 1) + + as'( n2 + n + i). (29) 

A " ' =  -n -1 

Using the corresponding eigenstates in) as a basis, we have to next order 

This determines A!,?'. A straightforward evaluation of the left-hand side of (28) yields 

The dominating corrections to the zero-order eigenfunctions 4 f ' ( y )  = (yln) are also 
obtainable by standard perturbation theory. The form of the perturbation (25) shows 
that the only non-vanishing terms are 

(30) ! 0 )  4 Y ' = a n ,  n +4 4 2 4  + a n ,  n + 2 4 n + 2 + a n ,  n - 2 4 kOl 2 + a n ,  n -4  4 f 1 4 .  
Explicit evaluation yields 

( n  + t ) [ ( n  + I ) (n  +2)1"' 
2 S 2 + 3  

an$+? = -- 24 

a n , , - 2  = - 24 

The eigenvalues A,, of the transfer matrix follow now from (14), (27) and  (29): 

An=,4;coth K = c o t h  K [ ~ + E A Y ) + E ~ A ( , Z ' + , ( E ' ) ]  (32) 

(33) 
(34) 

with 
A!,"= -2n - 1 

A y ' = y n ( n  + 1) +;+is2( n'+ n +f). 
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The principal eigenfunction 

4,,(y)= ~ - ” ~ e x p (  - 4 y ’ ) [ l + ~ ( 2 ~ ’ + 3 ) ( ~ y ~ - ~ y ’ + ~ ) + @ ( ~ ’ ) ]  ( 3 5 )  

will be particularly important in the following. 
The ratio of two eigenvalues will be close to unity, and  the small quantity 

K n =  l n ( A o / A n )  (36)  

which will be useful below, has the following expansion: 
K ,  = E ( h b l i - A ~ l ) ) + E 2 ( h b ~ ) - A h ( 2 )  , - 3 A o  I (’)’+! > A f l  ( 1 ) ’  ) + O ( E ~ )  

= 2 n ~  - ( t S ’ + $ ) n ( n  + 1 ) ~ ’ +  D ( E ~ ) .  (37 )  

4. Density profile 

The probability p (  h )  that column number n has precisely height h is 

The configuration probability P has been expressed in terms of the transfer matrix; 
we have used the expansion in terms of eigenvectors 

(39)  

the orthogonality of the eigenvectors, and  have, in the last step, taken the limit L + CO. 

The average density p ( z )  at a height z is determined by the probability that an  
arbitrary column has a height h 3 z :  

T ( h ,  A’ )  = c A f l h , ( h ) & , ( h ’ )  
n 

Since the expansion treats the heights as continuous variables we convert the sum to 
an  integral by a convenient version of the Euler-Maclaurin summation formula (appen- 
dix 1 ) :  

Introducing ( 3 8 )  and ( 1 3 )  we have 

with ’ 
i= y ( z - ; ) .  (43) 

(44)  

Explicit evaluation to order E is straightforward and we obtain to first order 

p ( z )  = pg+ (pI -p,){ f  er fc( i )  +  ET-"^ exp(-z^‘)[(&i’ - & i ) ( 2 s 2 + 3 )  --+i~’]} 
with 

erfc(x) = 2.rr-I” exp(-i’) dr. i: 
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The width W of the interface is essentially the inverse of the scaling factor -y, 

W = S-112G-I/4 

diverging when the external field vanishes. The error function profile for a very weak 
field is in agreement with the capillary-wave model of Buff et a1 (1965). 

Defining the width W more precisely through 
+II 

w2= 2 h ’ p ( h )  
h = - x  

we find 
t S  

W2 = y - 2  d ~ ~ ’ [ & ( y ) ] ~  = (8&S’)-’[ 1 - f (2S2+ 3 ) ~  + C( E ’ ) ]  I_, 
by means of (35) .  In terms of G, 

W=iS-”2G-”4[1 - G1’2(2S2+3)/16S]. (45) 
The sign of the last term shows that the interface region is slightly narrower than the 
capillary-wave prediction. 

From now on we prefer to work with the normalised density 

P ( Z )  - Pg 

PI - P g  

as our  density. This is equivalent to the usual convention of pg= 0 and p,  = 1 in 
lattice-gas models. 

The gradient of this normalised density will be useful in 5 8. From (44) we obtain 

5. Height correlations 

The two-point height distribution function p (  h, h‘; x)  is the probability of simul- 
taneously finding the heights h, = h and h,,, = h’ of two columns separated by a distance 
A .  

p ( h ,  x)  = ( 8 h , , , , 8 h , + \ , ! ,  ). 

Inserting the probability distribution (6) we obtain 

p ( h ,  h ’ ;  x)  =z- ’ (  T ” ) h h ’ (  T L - “ ) h ’ h .  

~ ( h ,  h’ ;  X)  = C ( h n / A o ) X ~ n ( h ) ~ , ( h ‘ ) ~ o ( h ) ~ o ( h ’ ) .  

(47) 
Inserting the eigenfunction expansion (37 )  we find for L +  CO 

X 

(48) 

The first term in the sum represents the product of the independent height probabilities, 
and  the remaining sum is, therefore, the height correlation function: 

n = O  
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The corresponding density-density distribution function is 

3469 

(50) 

and the density-density correlation function takes the form 
x x  

H ( z , z ’ ; x ) =  1 c g(h, h ’ ; x )  
h = :  h ’ = : ’  

- - f f f exP(-xK, )$n(h)~ , (h ’ )$~(h)~O(h‘ ) .  (51) 

So far everything is exact. We now perform a weak-field expansion. To lowest order, 
i.e. with K ,  = 2 n ~ ,  equation (37) and $,(h)  = y1”4f)(y) ,  the harmonic oscillator eigen- 
functions, the sum in (48)  takes the form 

h = :  h ’ = ; ’ n = l  

of the harmonic oscillator propagator. Here 

5 = exp( - 2 ~ x ) .  

Taken together with the two remaining eigenfunctions in (46) we obtain the properly 
normalised two-point distribution function 

Integrating out one variable, y‘ say, leads back to the square of the lowest-order 
eigenfunction, as it must by (38) .  The corresponding lowest-order correlation function 
is 

The distance along the interface, x ,  scales with E.  In other words, the interesting 
horizontal distance scale is when 

$ = E X  (55)  
is of order unity. 

It is clear from (52) that the horizontal correlation length is large, proportional to 
1 / ~ ,  and diverges in the weak-field limit (Reynardt 1983). For distances beyond this 
correlation length the correlations die off like 

(56)  
g(y, y ‘ ;  x )  - 2 r  - I  yy’ exp(-y2 - y” - 2 ~ x ) .  

As a different measure of the surface fluctuations we can use the mean square of 
height differences, 

A h ( x ) = ( ( h , - h , , , ) ’ ) = C C  ( h - h ’ ) ’ p ( h ,  h ’ ;  x ) .  (57) 
h h  

Inserting the lowest-order result for p (  h, h’; x )  we find 
A h ( x )  = f S - 1 G - 1 1 2 ( 1  -e -2Fr)  
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increasing linearly with distance when x is small compared with the horizontal correla- 
tion length. The x + oc limit gives the width W of the interface 

W = ( h f ) ' "  = [ ; A h ( = ) ]  1 '2  - - ;S- l"G- ' /4  (59) 

consistent with (45). 

6. The density-density correlation function 

The density-density correlation function H (  z, 2 ' ;  x )  is easily obtained from the height- 
height correlation function g(h ,  h ' ;  x): 

x x  

H ( z , z ' ; x ) =  c g ( h , h ' ; x ) .  
h = :  h ' z : '  

To lowest order, insertion of the height-height correlation function (54) gives, in the 
scaled variables (13) and (52), 

Differentiation of H with respect to 5 and use of the identity 

yields the more convenient representation 

1 -y2-y"+2yy'v 
2i? 1 - u 2  

H ( y ,  y ' ;  x) =- 1: du( l  - v 2 ) - ' / '  exp( 

for the density-density correlation function. The correlations are clearly positive. 
Figure 1 shows that the correlation function is peaked at the surface. The large- and 
short-distance behaviour of (63) is easily obtained. 

For large distances, i.e. 2 = E X  >> 1 , 5 =  exp(-22) will be small. Then (63) yields to 
first order in 5: 

Thus the horizontal correlation length is 1 / 2 ~ .  

when 5 -  1: 
For x = 0, on the other hand, I =  1. The first term in the integrand in (61) simplifies 

In terms of error functions this gives 

H ( y ,  y';  0) = j erfc(y,) - a  erfc(y) erfc(y') 
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( a )  

(bl 

Figure 1. Contour lines for the density-density correlation function H ( y ,  y ’ ;  x )  at ( a )  zero 
horizontal distance, x = 0, and ( b )  at a distance x equal to the horizontal correlation length, 
x = 1/28. 

where ym = max(y, y ’ ) .  Note that this is expressed in terms of the lowest-order density 
profile (44) as 

(67) 

This general relation follows from the definition of the density-density correlation 
function. 

The correlation function has for y = y’  and short horizontal distances a ridge, which 
for x = 0 is non-analytic, with a discontinuity in slope across the ridge (figure 1( a ) ) .  

Naturally the correlation function decays with increasing horizontal distance. For 
large distances it is, by (64), always exponential. For the maximum value of H at 
y = y’ = 0 one obtains easily from (63) the complete distance dependence: 

H ( y , y ’ ;  0) = P ( Y m )  - p ( v ) p ( y ’ ) .  

Stecki and Dudowicz (1986) tried to parametrise H, or rather the Fourier- 
transformed density-density correlation function 

+r 

fik Y ’ ;  k )  = exp(ikx)H(y, Y ’ ;  x )  
r;=--Sc 

in terms of the average and  relative heights 

Y = $ ( y  + y ’ )  YI? = y -Y‘  (70) 

as follows ( k  = 0 now): 

f i ( Y , y l 2 )  = k ( 0 , O )  exp(-ay:,) exp( -AoY2-A2Y4-A4Y6)  (71 )  
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with 

~ ~ ( O , O ) = S G - ” ~ ( ( H * + H ~ G ’  ’+ . . . I  (72) 

c ~ = ( ~ g + a , ( z - z ’ ) G ’  ‘+ . .  . (73) 

A , , = A , ~ + A , , ( Z - Z ’ ) G I ’ ’ + .  . .  n = 0,2,4.  (74) 
Since our analytic results cannot be obtained in the form (71) we cannot check the 

numerical coefficients directly. However, as we will show, some comparisons of the 
lowest-order coefficients can nevertheless be made. 

Stecki and Dudowicz give the value H* = 0.3465 (for their choice of temperature 
T=0.3Tc or K = 1.968956). This we can compare since we can take y = y ’ = 0  and 
use (68): 

+X 

d x  H(0,O; x )  = S-’G’’?a-’ d x  sin-’(e-’“) (75) l”+l H *  = S-IGl’2 L 
= a-’ I‘ d s  sin-’(e-‘) = + I n  2 

independent of K .  The value In 2 = 0.346 57 . . . checks perfectly with the numerical 
result just quoted. 

Expansion around y = y‘= 0 can give additional information. To lowest order (71) 
yields 

f i ( k = O ) =  SG-”’H*[l -&, ,Y’ -a , y : ,+ (~&, , -A , , )Y4  

+ (&,,Azo- A40 - iA&)  Y6+. . . 3. 
Expansion of the analytical result (63) and integration yields 

(76) 

H ( y , y ’ ;  x ) = H ( O , O ;  x ) + a - ’ ( l  - (z)”’{Y2[1-~-(1-(’)1’’]  
-~ : y f 2 [ l + l - ( l - 1 2 ) 1  ’3 
+4Y4( 1 - l2)-I[3(  - l3 -2+2(1 -  5 y 3  
-&Y6( 1 - 52)-’[7( 1 -iJ‘2)s’2- (212+61+7)(  1 - 5 ) ’ ] + .  . . }. (77) 

The term with y : 2  diverges for x + 0, reflecting the non-analyticity noted above. 
Integration over x now yields 

Comparison between (76) and (78) determines the constants. The numerical values 
of this analytic computation are, with the Stecki-Dudowicz results in parentheses, 

&,=1.612 15 (1.6121) L Y ~ =  1.039 657 (-1.0) 
Azo/&g = -0.0236 (-0.0232) 

= -0.000 798 (-0.000 93). (79) 
The small values of Azo and A4” indicate that fi is not far from Gaussian in the 

average height Y. In spite of the good agreement signalled in (79), there is, however, 
no theoretical basis for the parametrisation (71). It is therefore not surprising that 
Stecki and Dudowicz find it numerically unsatisfactory. 
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7. The direct correlation function 

The direct correlation function C ( z , ,  z,; x)  is the matrix inverse of H, 
c H ( z , ,  2 2 ;  XI -Xz)C(Z,, 2,; X.-X,) = (80) 

YZZZ 

or, alternatively, 

fib, zz; k ) h ,  z,; k )  = s:,:?. (81) 

A discrete Fourier transform with respect to horizontal distance has been introduced: 

2, 

In  terms of eigenfunctions and  eigenvalues of the transfer matrix we find readily from 
(49) that 

with 

Introducing the difference operator A ,  through A,F({zn}) = F({zn})  - F({zn  + ti,,,}) we 
have by (51) 

( 8 5 )  
to the height-height correlation 

(86)  

AlA2H(Z,, z,; x )  = d Z I ,  z2; XI. 
Proceeding formally, assuming that an inverse 
function g' exists, i.e. 

c &I, zz; k m z 2 ,  z,; k ) =  &,:, 
22  

we would have 

c ( z l ,  z2; k )  = A l A 2 d ( z l ,  z2; k ) .  (87) 
Finally, in terms of eigenfunctions and eigenvalues, the inverse to the height-height 
correlation function with the n = 0 included 

3t 

i ( z I , z 2 ;  k ) =  C J / ~ ( z , ) J / ~ ( z ~ ) J / O ( Z ~ ) ~ L O ( Z ~ ) ~ ~ ( ~ )  
n = O  

would be 

as is seen by 

we obtain 
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Apparently we could include the n = 0 term in g’ since fo = 0 by (36). However, this 
means that the constant l/fo that is eliminated by the difference operators A, is infinite. 
The basic difficulty with this formal derivation is that the inverse of g does not exist! 
The problem can be circumvented by using finite matrices with a cutoff M, i.e. IzJ C M, 
introducing reduced matrices with one state (e.g. z = - M )  excluded, and  taking the 
limit M+co at the end (Stecki 1984). The result is (89). 

From (89) we see that the k dependence of e is very simple: 

E ( z 1 ,  z z ;  k )  = C o ( z l ,  z 2 ) + 2 c o s  ( k ) C , ( z , ,  z 2 ) .  (90) 

This implies, as noted by Stecki (1984), that the direct correlation function is very 
short ranged: 

C ( z , ,  z2; x) = o  for x >  1. (91) 

It remains to determine the weak-field form of the functions CO and C,. We have 
in (89), since K ,  = 2 ~ n  + O ( E * )  

Replacing also $ , ( z )  by y”24!,o’(y) and A ,  by y d/dy, we have 

Introducing the explicit harmonic oscillator functions 

4Lo’(y) = (2”n!) - ’”H,(y)  exp( - - ; y 2 )  

and using the property 

d H ,  ( Y  I /  dy  = 2 nH,  - I ( Y )  

of the Hermite polynomials, we have 

(94) 

X 

C = ( 1  -COS k ) y 2 C ’  H , _ l ( ~ ) H , _ ~ ( y ’ ) [ 2 “ - ’ ( n  -l)!]-’ 
n = 1  

= (1  -cos k ) y 2 & - ’ & e x p ( $ y 2 + f y ’ 2 ) S ( y - y ’ )  (95) 
by completeness. Finally, by the definitions (16) and (17) of G and E we obtain 

C, = - 2 c 1  = 4s2J;; exp( y 2 ) 6 ( y  - y ‘ ) .  (96) 
Thus the direct correlation function varies rapidly with the height differences, but 
varies slowly with the average height Y The range of rapid variation, in reality of 
6(1), has zero range on our length scale and appears as a S function. A dependence 

~ , ( z , z ’ ) = y - ’ f ; ( z , z ’ ) e x p ( ~ ’ )  (97) 
such that 

lim r-’f;(YlY,Y’”OCS(Y-)”) (98) 
Y - 0  

would be consistent with the result (96). 

sation 
Stecki and  Dudowicz (1986) analyse their numerical results in terms of a parametri- 

(99) e ( z ,  z ’ )  = G-’ 4 M ( z - z ’ )  exp(AoY2+A2Y4+A4Y6)  
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similar to (97) since y a equation (16). For G + 0 they extrapolate numerically 
the coefficients A,(  G )  towards the values A, = 1, A: = A, = 0, in agreement with (97). 

8. Susceptibilities 

We have so far studied two-point correlation functions. A simpler quantity is the local 
susceptibility. This one-point function measures in our case the density response at a 
height z to a change in the external potential 

and is given by the susceptibility theorem (Stecki and Dudowicz 1986) 

Insertion of expression (83) for the Fourier transform of the density-density correlation 
function yields 

We now perform the weak-field expansion. The expansion (37) of K, yields 

l+e-",l 1 n + 1  
-=- +- (2S2+3)+O(&) .  
l-e-", ,  n& 8n 

The rather tedious evaluation of (101), relegated to appendix 2, gives the following 
result: 

x = ( S / 2 r )  1'2G-3'4 exp( - j?){ 1 + GI 'S-'[(2S2 + 3)(&i4-&i2 +&) - fS2.?'+&S2]} 
(103) 

with z  ̂ defined in (43). 
This may be compared with the parametrisation 

X ( Z ) = [ ( S / ~ ~ ) ' ~ ' G - ~ ' ~ + ~ ~ ~ - ~ ' ~ G - ~ ' ~ + .  . . ]  exp[- ( l+a lG"2+.  . .)i2] (104) 

used by Stecki and Dudowicz (1986) to analyse their numerical results. 
The constant and quadratic terms agree with (103) via the identification 

(105) a ,  =11s+Ls-I 
24 16 

b, = 21'4(7rS)' 2[&2S2+3)+$2]. (106) 

Numerically Stecki and Dudowicz, who worked at K = 1.468 956, found a ,  = 1.73, b, = 
0.747 912. The analytic results (105) and (106) yield a ,  = 1.730 65 and 6, = 0.748 941. 

While the numerical agreement seems very satisfactory, the fact remains that the 
parametrisation (104) does not account for the fourth-order term in the exact expansion 
(103): the local susceptibility is nor Gaussian beyond the lowest-order approximation. 

We note in passing that the susceptibility (103) is, to the order computed, propor- 
tional to the negative gradient (46) of the density profile: 

--=- dp mgX(z). 
dz kT 



3476 P C Hemmer and B Lund 

This constitutes a check, through the two lowest orders in the low-gravity expansion, 
of the Wertheim identity 

derived for continuum fluids (Wertheim 1976). 
By summing x(z) over z Stecki and  Dudowitz find the total susceptibility 

,yT = ,y( z )  = 2G-’  + wG-”2 . . .  

with w =5.55 x for their value of K. Summing (integrating) our analytical 
expression (103) over z a remarkable cancellation occurs, and  only one diverging term, 
namely 

(108) 

remains. The numerical factor of G - ’  in (107) is apparently a misprint in the reference. 
The smallness of the numerical coefficient w is consistent with our  exact result w = 0. 

,yT = iG-’  = ( m g p  1 - ’  

In a similar way a total susceptibility for k f 0 may be defined 
tl +r 

, fT(k)= f i ( z , z ’ ;  k ) .  

Since characteristic distances along the interface are of the order 1 / ~ ,  the relevant k 
values are small: 

k  EL with k  ̂ = e( 1 ) .  (110) 

i T ( O ) / i T ( k ^ ) =  1 + P [ 1 + ( ~ S - ’ + ~ S ) G ’ ’ 2 ] + B ( G ’ ’ 2 ) .  ( 1 1 1 )  

i T ( 0 ) / & ( k ) =  1+( /3r /2G)k2= l + k Z L f  (112) 

In appendix 3 we show that 

The dominating order agrees precisely with the capillary-wave theory prediction 

where is the effective (angle-averaged) surface tension (Fisher et a1 1982). Here 

L,= (pI‘/2G)‘’’ ( 1 1 3 )  
is the capillary length, the correlation length along the interface. To dominating order 
the value of the correlation length is 1 / 2 ~  in the present model, either from (64) or 
from (110) and ( 1 1 1 ) .  

Comparison between ( 1  1 1 )  and (1 12) yields to next order 

pr = 2S2+ ( S 3  +;S)G”*. (114) 
Stecki and Dudowicz find a similar parametrisation, with the numerical value 11.767 
for the coefficient of the term (with S =2.057 27). The analytic expression (114) 
gives the correct value 11.793. 

9. Concluding remarks 

We have in the present paper shown how to execute a weak-field asymptotic analysis 
of physical quantities for the present system, in particular the interface profile and  the 
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density-density correlation function. The dominating qualitative features of the model 
were already known through the numerical study of Stecki and  Dudowicz (1986) that 
motivated the present work. However, the present approach clarifies the nature of the 
weak-gravity expansion, and  we are able to obtain exact expressions for these physical 
quantities. The relation between our analytic approach and the numerical work has 
several aspects. The numerical work was mainly limited to one temperature, T = 0.3 T,, 
and what appeared as numbers in the numerical study is often in reality a function of 
temperature. 

Moreover, we show that the functional form that was used to parametrise the 
numerical results are in some cases correct, in other cases incorrect. 

To dominating order the results show Weeks’ scaling (Weeks 1984): distances along 
the interface scale with the capillary length L,, while distances normal to the interface 
scale with the interface width W. Both length scales diverge in the weak-gravity limit, 
since 

wccg-114 L , a  g- ] ’ ’ .  (115)  
The density variation shows, again to dominating order, the error-function profile 

d z )  = p S + ~ ( p I - p g )  erfc(z/ w) (116) 
of capillary-wave theory. (For a recent discussion of the reconciliation of the capillary- 
wave and the van der Waals theories of interfaces, see Hoye (1987).) 

The dominating-order density-density correlation function has, as already men- 
tioned, the scaling form 

(117) 
which at  large separations along the interface ( x  >> L,)-and only at large separations- 
is Gaussian in the vertical positions. 

We also obtain corrections to scaling, of relative order g’”’ .  An important feature 
of these contributions is that temperature now appears explicitly, not only through the 
length scales W and L,. The correction increases the interface density gradient. 

The direct density-density correlation function C( z, 2 ’ ;  x )  is exceptional in its 
scaling behaviour, or rather lack of such. As a function of the three variables average 
height +( z + z’), relative height ( z  - z‘) and  horizontal distance x it scales only in the 
former, the average height. Our present asymptotic expansion signals that the depen- 
dence on ( z - z ‘ )  is short ranged, but does not resolve the fine structure of this 
dependence, seen in the numerical results of Stecki and Dudowicz. It remains to 
extract this behaviour analytically. 

H(z ,  2 ’ ;  x )  = H ( z /  W, z’/ W ;  x / L , )  
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Appendix 1. An Euler-Maclaurin formula 

Purely formal operator manipulation on the Taylor expansion 
p (  h )  = exp[( h - z + f ) D ] p ( z  -;) 
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with D = d/dz, gives 

= [& D - A D 3  + D( D 5 ) ] p (  z - $) = &p’ ( z - f) - &p”’( z - f) + . . . . 
More prudent derivations yield the same result. 

Appendix 2. Weak-field expansion of the susceptibility 

In this appendix we compute the local susceptibility to leading and next-to-leading 
order in the weak-field expansion. The starting point is (101): 

r x +x 

x ( z )  = c c c f cL,(h)cLO(h)+“(h‘)cLO(h’)f,(k = 0 )  (A2.1) 

with 

1 n + l  
n E  8 n  

f n ( k  =0)  =-+- (2S2+3)+ D ( E ) .  (A2.2) 

We begin with the summation over z’ 

with the last equality by partial summation. Inserting the expansion (22) for the 
eigenfunctions (13), we have to O( E )  

+a +a- 

Y L  = { ~ . Y Y ~ ~ ( Y ) ~ ~ ( Y )  = { dyy4!,”(y)4bO’(y) 
--x - X  

+x 

+ E  J dYY(4Y)(Y)4bO)(Y)+ 4!%44Y(Y)). 
--z 

The first-order eigenfunction expression (30) 

(A2.3) 

with at most four non-zero coefficients, and the harmonic oscillator matrix elements 

(A2.4) 

gives 

yZn = [ 1/& - &v5(2S2+ 3 ) ~ ] & ,  +&d3(2S2 + ~ ) E S , , ~  + O(E’). (A2.5) 

We have used the explicit expressions (31) for the expansion coefficients a. With the 
notation 

(A2.6) 
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we may write the susceptibility expression (A2.1) as 
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(A2.7) 

Since Z3 is already of order E we need J3 and f, to leading order only: 

y&x( z) = J 1 v 5 [ ! , + h ( 2 S 2 +  3)e] + J3&&(2s2+ 3 ) ~ .  (A2.8) 

Finally we must evaluate J ,  and J 3 .  The Euler-Maclaurin expression (41) yields 

with 2 =  y ( z - i )  as in (43). The last term is of C ( E )  since y’=4S2& by (16) and (17). 
Insertion of the eigenfunction expansion (22) gives 

Jn = lx d y 4 ‘ , O 1 ( y ) 4 b O ’ ( y ) i e  fi dy(4!,“q5b01+4)10’q5~1) 

d 
d i  + as2& - ( 4L01( 2) I$;’( 2)). (A2.10) 

It is clear that the following properties of the harmonic oscillator eigenfunctions: 

J m L 0 ’ ( Y ) 4 h 0 ’ ( Y )  = -- (d)1°L(Y)4bo’(Y)) (A2.11) 
d 

dY 
equivalent to the recursion 

H n - l ( y )  = 2 y H n ( y ) - H ’ , - l ( y )  
for Hermite polynomials, will enable us to execute the integrations in (A2.10). We find 

J3 =6-”’q5~”(;)q5b“’(2)+O‘(~) = (48~)-” ’ (42’ -2)  exp(-;’)+C(E) (A2.12) 

and, using 

4\11 = a,,3&’+ 

and 

4bi’= ao,ZC$:01+(Y0,44~o) 

derived from (30) and (311, to first order in E, we obtain 

J ,  = ( 2 ~ ) - ~ ‘ ~ e x p ( - 2 ’ ) [ l + h ~ ( 2 S ’ + 3 ) ( ~ - l O 2 ’ + 2 ~ ) - ~ ~ S ~ ( 2 2 ’ - 1 ) ] .  (A2.13) 

Finally, insertion of (A2.12) and (A2.13) into (A2.8) gives 

X (  z )  = (S/27r) 1’2G-3’4 exp( -2*) + ( ~ T S ) - ” ’ G - ~ ’ ~  exp( -2’) 
X [(2S2 + 3)(& -&;’+hi4) +is’( 1 - 2 i 2 ) ]  + O( 

which is (103) in the main text. 

Appendix 3. Evaluation of ,fT(k) 

The k-dependent total susceptibility iT can be obtained from the two-point density- 
density correlation function. By (83) and (109) 
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As in appendix 2 the summation over the heights can be done, with the result (A2.5). 
To O(&) then 

(A3.2) y2 iT (  k * )  = [i-a(2s2 + 3)&]fi( l )  
and thus 

= 1 +sin’(&k*)/sinh’(~,/2) = 1 +(2&k*/K,)’+0(&’). 

Using the expansion (37) for K ,  we find 

Expressing E in terms of G, this is (1 11) in the text. 
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